Instructions: Suppose your student number is

20XY-ABCDE

with binary representation of BCD given by

$$
(B C D)_{10}=\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3} \mathrm{n}_{4} \mathrm{n}_{5} \mathrm{n}_{6} \mathrm{n}_{7} \mathrm{n}_{8} \mathrm{n}_{9} \mathrm{n}_{10}\right)_{2}
$$

For each $i \in\{1,2,3, \ldots, 10\}$, if $\mathrm{n}_{i}=0$, answer item $\mathrm{i}(\mathrm{a})$, else if $\mathrm{n}_{i}=1$, answer item $\mathrm{i}(\mathrm{b})$ instead.
e.g. if the middle three digits of your student number is 072 with binary representation

$$
(072)_{10}=(0001001000)_{2}
$$

you need to answer $1(\mathrm{a}), 2(\mathrm{a}), 3(\mathrm{a}), 4(\mathrm{~b}), 5(\mathrm{a}), 6(\mathrm{a}), 7(\mathrm{~b}), 8(\mathrm{a}), 9(\mathrm{a})$, and 10(a).

Work Independently! Do not consult anyone except your instructor about these problems.

Questions:

I. Evaluate the following integrals

1. Integrals of Powers

(a) $\int(\sqrt{x}-1)^{6} d x$
(b) $\int \frac{z^{2}-1}{\left(z^{2}+z+1\right)^{2}} d z$
2. Integrals of Trigonometric Functions
(a) $\int \sqrt{\frac{\sin y}{\cos ^{5} y}} d y$
(b) $\int\left(\sec ^{2} \theta-\cos ^{2} \theta\right) \tan \theta d \theta$
3. Definite Integral
(a) $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos \beta \cos (\pi \sin \beta) d \beta$
(b) $\int_{1}^{4} \frac{1}{\sqrt{w}(\sqrt{w}+2)^{3}} d w$
4. Integrals involving Absolute Value
(a) $\int_{0}^{\frac{\pi}{2}}\left|\cos u-\frac{1}{2}\right| d u$
(b) $\int_{0}^{-}\left|3 s^{2}-2 s-1\right| d s$
II. Do as indicated.
5. Absolute Extrema
(a) Find the absolute extrema of $f(x)=-4 x^{3}-9 x^{2}+12 x-3$ on the interval [0.11.
(b) Find the absolute extrema of $f(x)=4 x^{3}-9 x^{2}-12 x-3$ on the interval $[-1,0]$.
6. Optimization
(a) An open box is to be made from a $10-\mathrm{cm}$ by $10-\mathrm{cm}$ piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. What size should the squares be to obtain a box with the largest volume?
(b) Find the least amount of material that can be used to construct a rectangular box with an open top and square base if its volume is $32 \mathrm{in}^{3}$.
7. Average Value
(a) Find $b>0$ such that the average value of $g(x)=6 x^{2}$ on $[0, b]$ is equal to 16 .
(b) If g is continuous on $[1,3]$ and $\int_{1}^{0} g(x) d x=4$, show that there is a $c \in[1,3]$ such that $g(c)=2$.
8. Derivative of Integrals
(a) Let $H(x)=\int_{x}^{2 x \sin \frac{x}{3}} \sqrt{2+\left(\frac{t}{\pi}\right)^{2}} d t$.
i. Find $H\left(\frac{\pi}{2}\right)$
ii. Find $H^{\prime}\left(\frac{\pi}{2}\right)$
(b) Let $H(v)=\int_{\tan x}^{x^{3}+x} \frac{2 \cos v}{v+1} d v$.
i. Find $H(0)$
ii. Find $H^{\prime}(0)$
9. Rectilinear Motion
(2 pts, 3 pts)
(a) A ball is thrown vertically upwards with initial velocity of $32 \mathrm{ft} / \mathrm{s}$ from the top of a building. The ball hit the ground after 3 seconds. (Assume acceleration due to gravity is equal to $-32 \mathrm{ft} / \mathrm{s}^{2}$)
i. When will the ball reach its maximum height?
ii. What is the height of the building?
(b) The acceleration, in $\mathrm{m} / \mathrm{sec}^{2}$, of a particle moving along a line at t seconds is given by $a(t)=12$. If at $t=1$, the particle is moving at the speed of $6 \mathrm{~m} / \mathrm{sec}$ and is one unit to the right of the origin.
i. Find the velocity of the particle when $t=2$.
ii. Find the position of the particle when $t=0$.
III. For the following regions R, SET UP the integral(s) needed to find the following:

1. the area of region R
2. the perimeter of region R
3. volume of the solid of revolution when R is revolved about the given line:
(a) using the method of Washers
(b) using the method of Cylindrical Shells
(a) R bounded by $C_{1}: y=x^{2}, C_{2}: y=6-x$ and the y-axis.

Axis of revolution: $y=-1$
(b) R bounded by $C_{1}: y=3-2 x^{3}, C_{2}: y=\frac{x+1}{2}$ and the line $x=-1$.

Axis of revolution: $x=-2$

Total: 40 points (Bonus: 8 points)

