Instructions: Suppose your student number is

20XY-ABCDE

with binary representation of BCD given by

$$(BCD)_{10} = (n_1 \, n_2 \, n_3 \, n_4 \, n_5 \, n_6 \, n_7 \, n_8 \, n_9 \, n_{10} \,)_2 \,.$$

For each $i \in \{1, 2, 3, ..., 10\}$, if $n_i = 0$, answer item i(a), else if $n_i = 1$, answer item i(b) instead.

e.g. if the middle three digits of your student number is 072 with binary representation

$$(072)_{10} = (0001001000)_2$$

you need to answer 1(a), 2(a), 3(a), 4(b), 5(a), 6(a), 7(b), 8(a), 9(a), and 10(a).

Work Independently! Do not consult anyone except your instructor about these problems.

Questions:

- I. Evaluate the following integrals
 - 1. Integrals of Powers

(a)
$$\int (\sqrt{x} - 1)^6 dx$$

(b) $\int \frac{z^2 - 1}{(z^2 + z + 1)^2} dz$

2. Integrals of Trigonometric Functions

(a)
$$\int \sqrt{\frac{\sin y}{\cos^5 y}} \, dy$$

(b) $\int (\sec^2 \theta - \cos^2 \theta) \tan \theta \, d\theta$

II. Do as indicated.

5. 4

3. Definite Integral

(a)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos\beta \cos(\pi \sin\beta) d\beta$$

(b)
$$\int_{1}^{4} \frac{1}{\sqrt{w} (\sqrt{w}+2)^{3}} dw$$

4. Integrals involving Absolute Value
(a)
$$\int_{0}^{\frac{\pi}{2}} \left| \cos u - \frac{1}{2} \right| du$$

(b)
$$\int_0^1 |3s^2 - 2s - 1| ds$$

- (a) An open box is to be made from a 10-cm by 10-cm piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. What size should the squares be to obtain a box with the largest volume?
- (b) Find the least amount of material that can be used to construct a rectangular box with an open top and square base if its volume is 32 in^3 .

7. Average Value

(a) Find b > 0 such that the average value of $g(x) = 6x^2$ on [0, b] is equal to 16.

(b) If g is continuous on [1,3] and $\int_{1}^{1} g(x) dx = 4$, show that there is a $c \in [1,3]$ such that g(c) = 2.

(2 pts)

(4 pts each)

8. Derivative of Integrals

(1 pt, 3 pts)

(a) Let
$$H(x) = \int_{x}^{2x \sin \frac{x}{3}} \sqrt{2 + \left(\frac{t}{\pi}\right)^2} dt.$$

i. Find $H\left(\frac{\pi}{2}\right)$
ii. Find $H'\left(\frac{\pi}{2}\right)$
(b) Let $H(v) = \int_{\tan x}^{x^3 + x} \frac{2 \cos v}{v + 1} dv.$
i. Find $H(0)$
ii. Find $H'(0)$

9. Rectilinear Motion

(2 pts, 3 pts)

- (a) A ball is thrown vertically upwards with initial velocity of 32 ft/s from the top of a building. The ball hit the ground after 3 seconds. (Assume acceleration due to gravity is equal to -32 ft/s²)
 - i. When will the ball reach its maximum height?
 - ii. What is the height of the building?
- (b) The acceleration, in m/sec², of a particle moving along a line at t seconds is given by a(t) = 12. If at t = 1, the particle is moving at the speed of 6 m/sec and is one unit to the right of the origin.
 - i. Find the velocity of the particle when t = 2.
 - ii. Find the position of the particle when t = 0.

III. For the following regions R, **SET UP** the integral(s) needed to find the following: (3 pts each)

- 1. the area of region R
- 2. the perimeter of region R
- 3. volume of the solid of revolution when R is revolved about the given line:
 - (a) using the method of **Washers**
 - (b) using the method of **Cylindrical Shells**

10 Dlana Dariar

(a) R bounded by $C_1: y = x^2$, $C_2: y = 6 - x$ and the y-axis.

Axis of revolution: y = -1

papilo2017